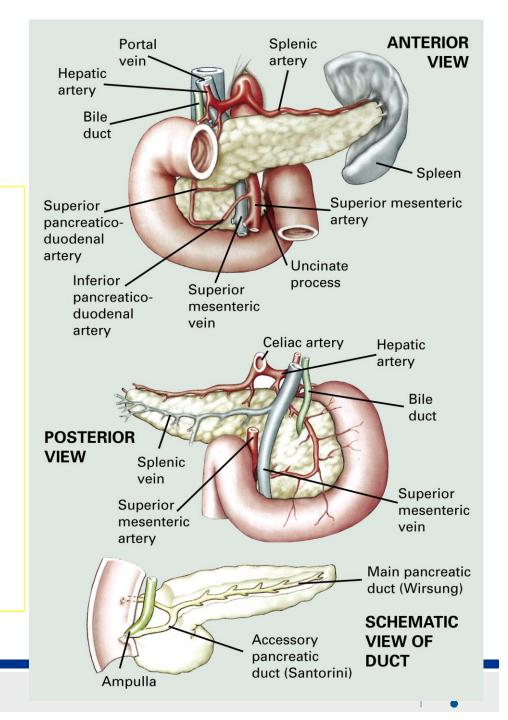
Pancreas Transplantation in Norway: An update – NTPG 081215

High number of technical complications, but the successful cases are very awarding - the patient becomes abruptly:

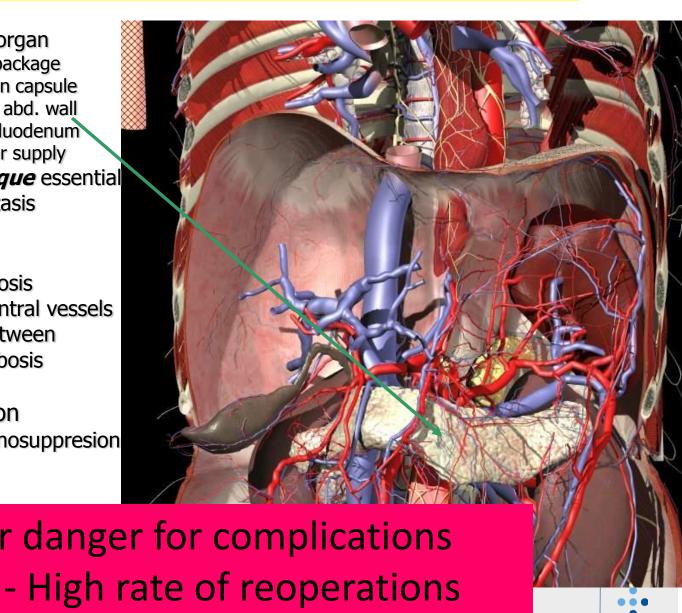
- Free from Insulin
- Free from Dialysis (SPK)

Intentional increase in number of PTx's performed during recent years - and a high rate of solitary PTx


Rune Horneland / Ole Øyen
Oslo University Hospital Rikshospitalet
NORWAY

PANCREAS-Tx Anatomy

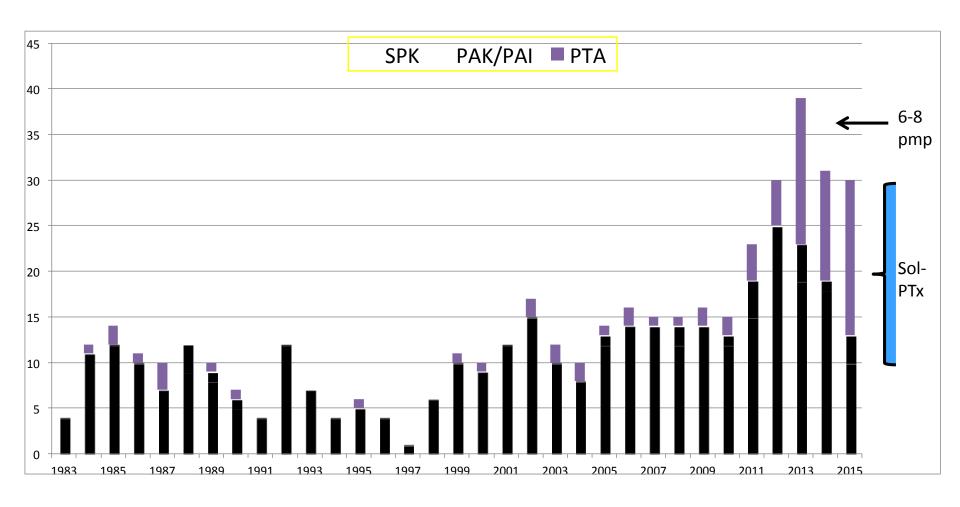
- Technically demanding;
 localisation; organ
 relation; vessels
 - The desired Insulinproducing β-cells only account for 1-3 %
- ->95 % "unwanted" potent enzymepackage!!



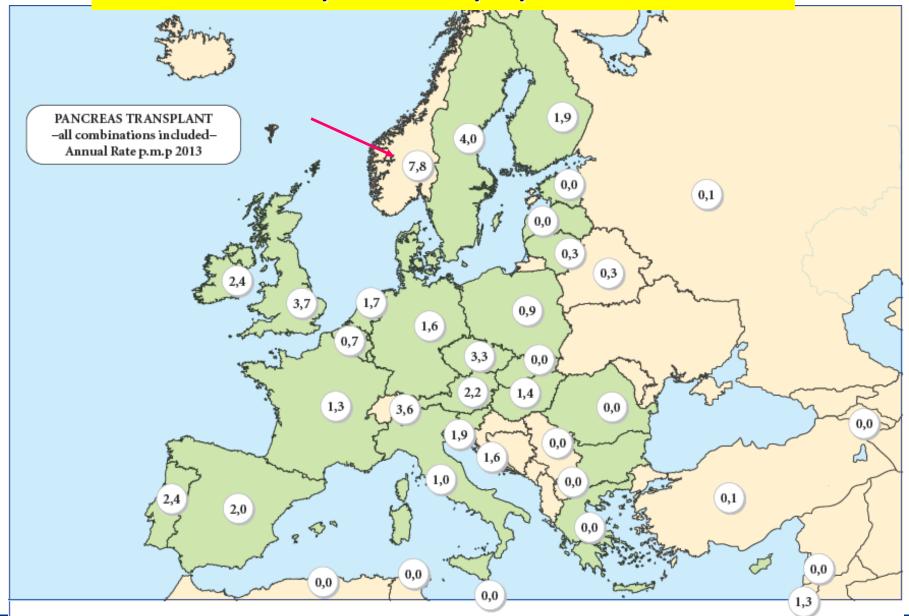
PANCREAS-Tx: Problems

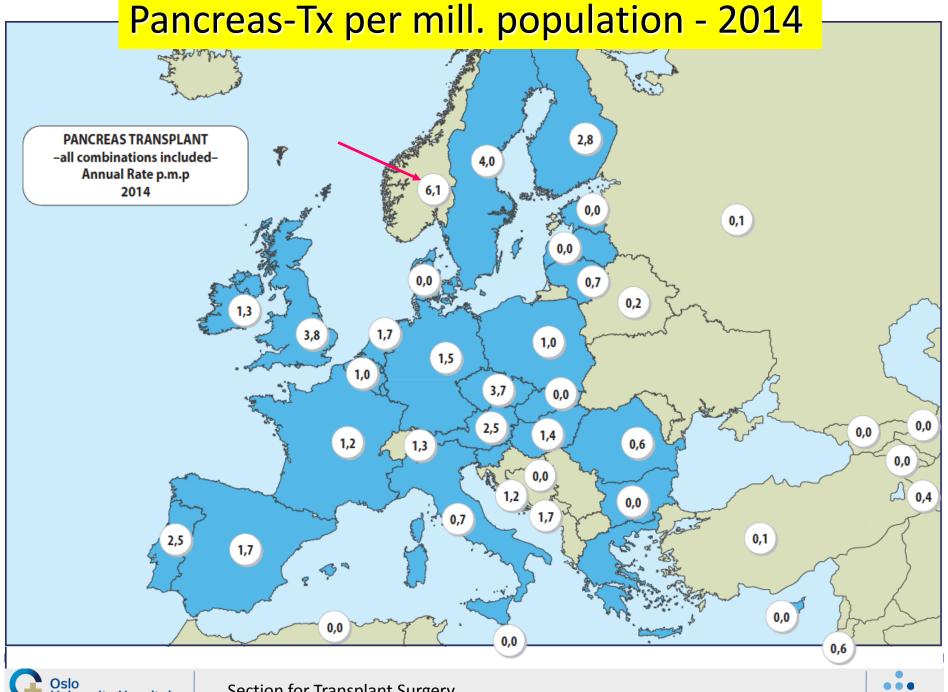
- Surgery
 - Difficult, fragile Tx-organ
 - Potent enzyme-package
 - Fragile tissue/thin capsule
 - On the posterior abd. wall
 - Adhered to the duodenum
 - Complex vascular supply
 - **Atraumatic tecnique** essential
 - Challenging hemostasis
- Anticoagulation
 - High risk of thrombosis
 - "Oversized" central vessels
 - Delicate balance between bleeding and thrombosis
- Immunology; Rejection
 - High-levelled immunosuppresion required
- Infections

Major danger for complications


PANCREAS-Tx: Types/Indications

- Simultaneous Pancreas- + Kidney-Tx (SPK)
 - Uremic DM pats < 50-60 years should be offered SPK
 - Traditionally better results with SPK than Sol-PTx
- Solitary Pancreas-Tx (Sol-PTx)
 - Selected non-uremic DM pats should be offered solitary PTx ("brittle DM", "unawareness")
 - Pancreas-Tx alone (PTA)
 - Pancreas-Tx after previous Kidney-Tx (PAK) and/or previous Islet-Tx (PAI)
 - Allready on immunosuppression


Number/type of PTx in Norway 1983-2015

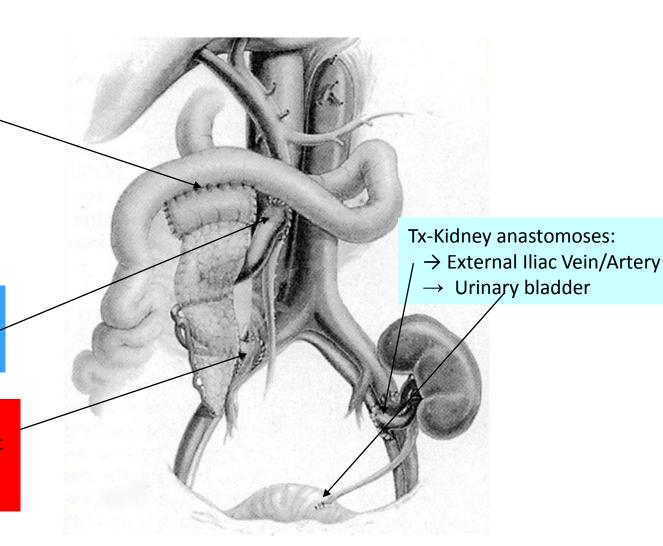


Pancreas-Tx per mill. population - 2013

PANCREAS-Tx in Norway Surgical tecnique: Explantation

- The handling of pancreas during removal is demanding and decisive !!
 - Atraumatic technique is essential ("no touch")
- LigaSure Technically a quantum leap!
- Vessels
 - Preferably coeliac trunk
 and sup. mes. art.
 on common aortic segment
 - Preferably long portal vein

Surgical technique: Transplantation Simultaneous Pancreas + Kidney Tx (SPK)

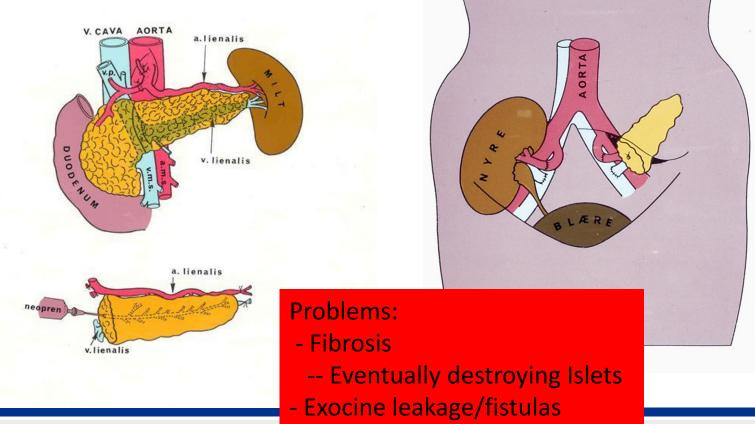

Entero-anastomosis:

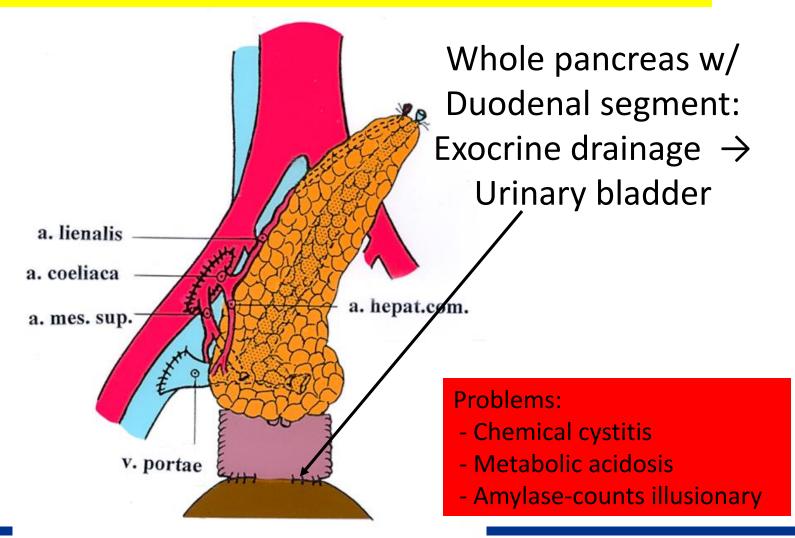
Tx-duodenum → Jejunum

Systemic venous anastomosis:

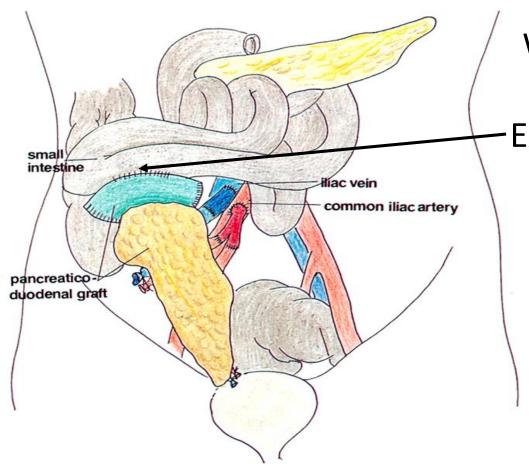
Portal Vein → Vena Cava

Arterial anastomosis:
Coeliac Trunk + Sup Mes Art
on common aortic patch →
Comm Iliac Art dxt



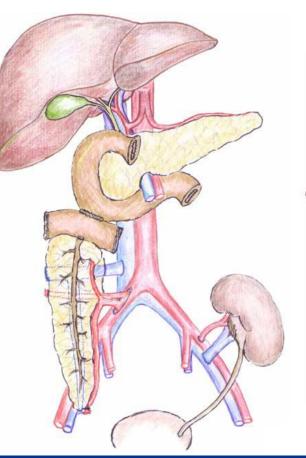

Pancreas-Tx in Norway: HISTORY Technique 1: 1983-1988

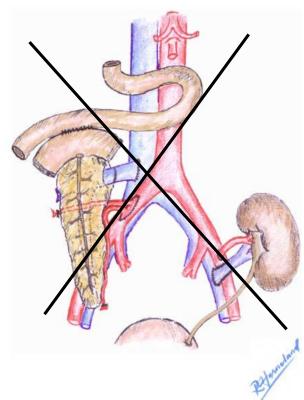
Segmental pancreas - Duct-occlusion w/ Neopren


Pancreas-Tx in Norway: HISTORY Technique 2: 1988-1997

Pancreas-Tx in Norway: HISTORY Technique 3: 1997 -

Whole pancreas w/
Duodenal segment
Exocrine drainage →
Jejunum


Pancreas-Tx in Norway: HISTORY


Enteroanastomosis:

Duodenoduodenostomy 2012-

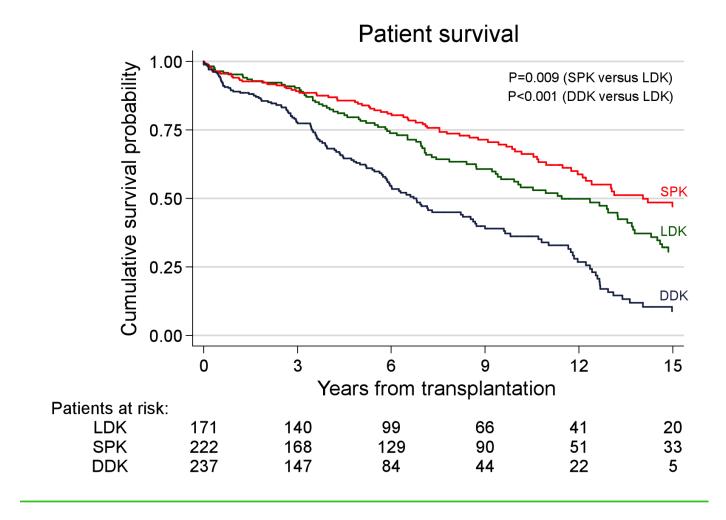
Benefits:

- Easier endoscopic access for 'scheduled' and 'ad hoc' biopsies
- In case of exocrine leakage: Allows for stenting of the pancreatic duct

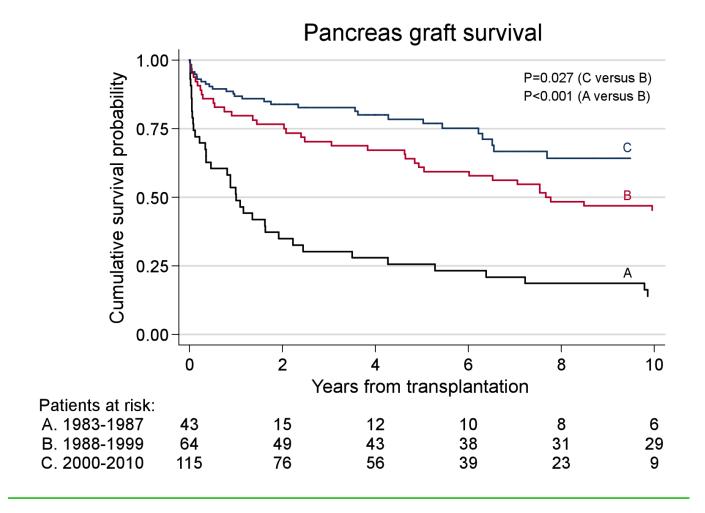
Lindahl et al., Diabetologia, 2013

Diabetologia (2013) 56:1364–1371 DOI 10.1007/s00125-013-2888-y

ARTICLE


Improved patient survival with simultaneous pancreas and kidney transplantation in recipients with diabetic end-stage renal disease

- J. P. Lindahl · A. Hartmann · R. Horneland ·
- H. Holdaas A. V. Reisæter K. Midtvedt T. Leivestad •
- O. Øyen · T. Jenssen


PTx in Norway: Results I (Lindahl et al. 2013)

PTx in Norway: Results II (Lindahl et al. 2013)

PTx in Norway: Risk factors for death (Lindahl et al. 2013)

Cox regression analysis of risk factors for patient death.

	Univariate analysis		Multivariate analysis Model 1			Multivariate analysis Model 2			
	HR	95% CI	<i>p</i> -value	HR	95% CI	<i>p</i> -value	HR	95% CI	<i>p</i> -value
Recipient age	1.03	1.02-1.04	<0.001	1.03	1.02-1.04	<0.001	1.03	1.02-1.04	<0.001
Recipient gender	1.06	0.83-1.34	0.65						
Treatment LDK (<i>n</i> =171) SPK (<i>n</i> =222) DDK (<i>n</i> =237)	0.68 1.82	Reference 0.51-0.91 1.39-2.37	0.010 <0.001	0.70 1.29	Reference 0.52-0.95 0.96-1.75	0.02 0.094	0.84 1.41	0.60-1.18 1.04-1.93	0.32 0.029
Time on dialysis	1.0006	1.0002-1.0009	0.001	1.001	1.000-1.001	0.001	1.001	1.000-1.001	0.001
Transplant era 1983-1999 (n=304) 2000-2010 (n=326)	0.57	0.43-0.77	<0.001	0.41	0.30-0.56	<0.001	0.40	0.30-0.55	<0.001
Donor age	1.01	1.01-1.02	< 0.001				1.01	1.00-1.02	0.018

PTx in Norway: Conclusions I (Lindahl et al. 2013)

- Recipients receiving SPK have superior patient survival compared to both LDK and DDK
- Significantly improved graft and patient survival during the last decade
- Significant effect on patient death by:
 - Transplant era
 - Time on dialysis
 - Donor age
 - Recipient age

Horneland et al., Am J Transpl, 2015

American Journal of Transplantation 2014; XX: 1–9 Wiley Periodicals Inc.

© Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons

doi: 10.1111/ajt.12953

Brief Communication

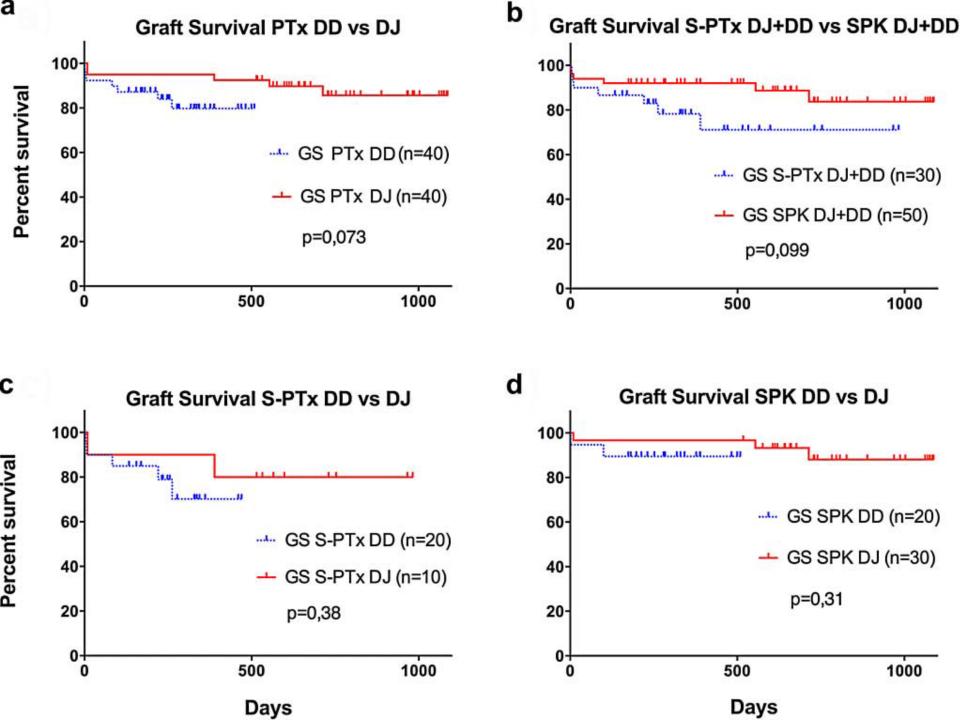
Pancreas Transplantation With Enteroanastomosis to Native Duodenum Poses Technical Challenges—But Offers Improved Endoscopic Access for Scheduled **Biopsies and Therapeutic Interventions**

R. Horneland^{1,*}, V. Paulsen², J. P. Lindahl³, K. Grzyb⁴, T. J. Eide⁴, K. Lundin², L. Aabakken²,

T. Jenssen^{3,5}, E. M. Aandahl^{1,6,7}, A. Foss¹ and

O. Øyen¹

remained an independent predictor of patient death in multivariate analysis. PTx-DD showed a higher rate of thrombosis and inferior results, but facilitated a protocol biopsy program by EUS that was feasible and safe. Given that technical difficulties can be solved,


Horneland et al., Am J Transpl, 2015

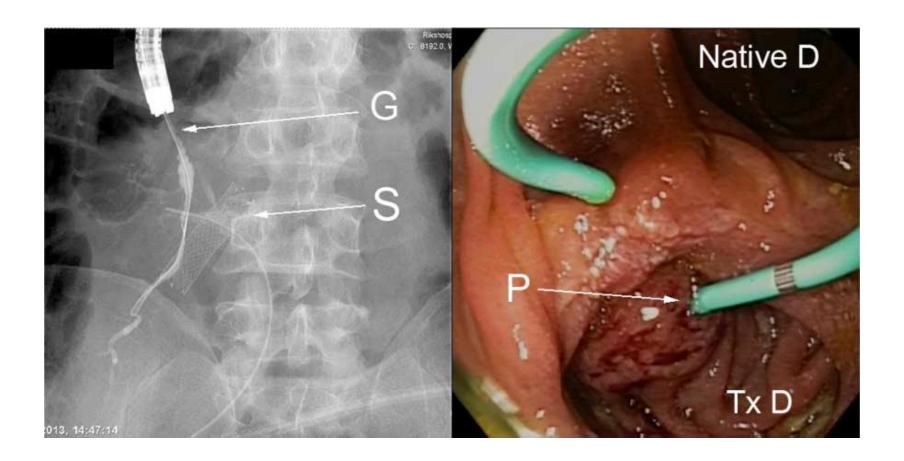
DD vs DJ - inital experience

# (%) / Mean (range) / Mean ± SD	PTx-DD Sep 2012 – Sep 2013 n=40	PTx-DJ (Control) Feb 2011 – Sep 2012 n=40	p t-test/ Fisher exact
Reoperations (# patients) - Bleeding/Thrombosis/Exocrine Leakage / Kidney related/Other	19 (47,5%) 8 / 4 / 0 / 2 / 6	12 (30%) 6/2/2/0/2	0.168
Pancreas venous thrombosis rate - Graft loss due to v. thrombosis	9 (22,5%) - 5 (12,5%)	2 (5%) - 2 (5%)	0.048 * 0.432
Rejection rate; biopsy-verif. (# pts) - Total # of rejections treated	9 (22,5%) - 14	10 (25%) - 11	1.000
Pancreas Graft loss	8 (20%)	5 (12,5%)	0.546
Kidney Graft loss (SPK)	1 (2,5%)	1 (3,3%)	1.000
Patient death	1 (2,5%)	3 (7,5%)	0.615

Horneland et al., Am J Transpl, 2015

Risc factor analysis

Cox regression	Independent covar. w/ statistical significance	Univariate analysis		Multivariate analysis	
Dependent var.:	at p < 0.15 included	р	Hazard Ratio (95% CI)	р	Hazard Ratio (95% CI)
Pancreas graft	Time on waiting list	0.007*	1.00 (1.00-1.00)	0.493	1.00 (1.001.00)
loss	HLA -A+B mismatches - DR mismatches	0.038* 0.549	0.51 (0.27-0.96) 0.76 (0.31-1.87)	0.323	0.69 (0.34-1.43)
Patient death	Recipient age	0.009*	1.21 (1.05-1.41)	0.066*	1.24 (0.99-1.56)
	Time on waiting list	0.008*	1.00 (1.00-1.00)	0.906	1.00 (1.00-1.01)
	HLA -A+B mismatches - DR mismatches	0.038* 0.211	0.33 (0.11-0.94) 0.36 (0.07-1.79)	0.437	0.51 (0.09-2.79)
Binary logistic Regression	Independent variables w/ statistical significance at p < 0.15 included	Univariate analysis		Multivariate analysis	
Dependent var.:	at p < 0.13 included	р	Odds Ratio (95% CI)	р	Odds Ratio (95% CI)
Reoperation	Recipient BMI	0.040*	1.17 (1.01-1.36)	0.039*	1.30 (1.01-1.67)
Per patient; (one or more reop.)	Donor age : - Continous var. - <50 vs > 50 - <45 vs > 45 - <40 vs > 40	0.028* 0.035* 0.005* 0.042*	1.04 (1.00-1.08) 3.41 (1.09-10.66) 4.16 (1.55-11.19) 2.61 (1.03-6.57)	0.021*	1.08 (1.01-1.14)
Rejection	-	-	-	-	-


Horneland et al., Am J Transpl, 2015 Biopsies

# Biopsies performed / # Rejections detected	PTx-DD Sep 2012 – Sep 2013 n=40	PTx-DJ (Control) Feb 2011 – Sep 2012 n=40	
Scheduled biopsies total	61	78	
Endoscopic biopsies of Duodenum/Pancreas	45 / 39	30 / 0	
Percutaneous Kidney biopsies 6/52wks (SPK)	16 / 1 (n=20)	23 / 25 (n=30)	
Rejections detected by sched. biopsies alone D/P/K	0 / 3 / 0	0 / - / 0	
Indication biopsies total	35	31	
Endoscopic biopsies Duodenum/Pancreas	11 / 3	1 / 0	
Percutaneous Pancreas biopsies	15	3	
Percutaneous Kidney biopsies	7	27	
Rejections detected by indication biopsies D/P/K	2/6/0	0 / 1 / 10	

The duodenoduodenostomy: Stenting the pancreatic duct

CONCLUSIONS II (Horneland et al.)

- A huge increase in PTx during recent years
 - A very high rate of Sol-PTx
 - Releasing on donor criteria (age etc) is dangerous
- (Still a high rate of reoperations (30-50%))
- (A high rate of thrombosis initially in DD's)
- Solitary PTx results are still poorer than SPK!
- Duodeno-duodenostomi is safe and offers improved access for biopsies and ductal stenting
 - Value of scheduled EUS biopsies still not proven!

FUTURE STUDIES Questions to be adressed

- Prospective PTx study started in Oct. 2013
- The value of endoscopic/scheduled biopsies ??
 - Duodenal segment biopsies ? Pancreas biopsies ?
- Reasons for poorer Solitary PTx results ??
 - Impeded rejection monitoring due to lack of reporter-kidney?
 - Immunologically protection due to TX-kidney? (SPK>PAK>PTA)
 - Still to weak immunosuppression?
- Non-invasive rejection monitoring?
 - C-peptide CRP Amylase Lipase?
 - Advanced immunologic markers?

Preliminary data ongoing PTx-study 09-2013 ->

- N = 65 (per 08.12.15) 35 S-PTx, 30 SPK
- Patient survival 64/65 = 99%
- Graft survival 60/65 =92%
 - Graft loss 2 thrombosis, 3 rejection (PTA, AMR), 1 bleeding
- Thrombosis 5/65 cases (8%)
 - 2 Graftectomy. 3 underwent successful perc. trhombectomy
- Lower rate of intervention due to bleeding. Still higher rate of thrombosis than before DD-era.
- Rejection rate is higher in PTA
 - DSA and AMR predicts very poor outcome in PTA

