
Epitope-mapping of Anti-HLA cl.I and II

Antibodies in Highly Sensitized Patients by

Machine Learning

March 2, 2018

1 Problem Statement

Organ donors can be matched by comparing their reactivity to certain HLA
alleles. Given a reactivity per allele, which contains an amino acid sequence, we
wish to find subsequences of these that contain the most information for different
levels of reactivity. In essence, we wish to compress amino acid sequences as
much as possible while still containing a significant amount of the information
needed to classify each allele into the right reactivity category, i.e. find the
amino acids that contain this information. The idea is to see if there are any
recurring patterns associated with different reactivity levels.

2 Data and Method

Each data set represents one patient/individual contains a number of data
points, each representing an HLA-allele and a reactivity value for the corre-
sponding bead. In total, there are 98 data sets (28 from Aarhus, 20 from
Helsinki, 25 from Oslo, and 25 from Uppsala), each with 97 data points. Each
HLA-alleles is made up of a sequence of amino acids of which the first 274 amino
acids constitute the data points used in this work. In addition to actual amino
acids, their type (acidic, basic, etc.) is also included. Thus, each data point has
548 features. Reactivity values are classified using the following thresholds (can
be configured when running the program):

• Level 0: below 1000

• Level 1: 1000-2999

• Level 2: 3000-5999

• Level 3: 6000 and above

In order to extract from the amino acid sequences the smallest possible
number of amino acids that contain the information needed to correctly classify
each allele, a machine learning model is trained to classify the alleles given
the entire 274-length sequences. Many common machine learning models such
as neural networks are black box models, i.e. they provide no details about

1



how they make their decisions. In order to extract the most important amino
acids, a more transparent machine learning was needed, and so the number of
feasible algorithms was limited. Tree-based algorithms seemed like the obvious
choice because of their transparency, and so a selection of different types of
model were used: Adaptive Boosting (AdaBoost), Extremely Randomised Trees
(Extra-Trees), and Random Forests. Each model is comprised of an ensemble of
weaker learners and base their final decision on either the majority or a weighted
average of the weak learners’ decisions. While Random Forests and Extra Trees
always use decision trees, AdaBoost can – in theory – use any type of learner,
but they use most commonly use decision trees, and this has also been the case
in this project. Also, simple Decision Trees were experimented with.

Data was split into a training data set (50 samples) and a test data set (47
samples).

Once trained, the most valuable features (amino acid positions) in the se-
quences were extracted. This was a trade-off between quality of classification
versus explainability of results. Keeping 90 percent of the variance seemed like
a sweet-spot. This allowed models to significantly reduce the number of amino
acids needed to classify while still performing well in terms of classification.

3 Results

Of the four different algorithms, AdaBoost seems by far the best at finding
a small number of important features compared to the three other models,
although its precision is not nearly as high as that of the other models; both
Extra Trees and Decision Trees were able to score a precision of 1.0 (100%),
but the Extra Trees yielded very large sequences. The Random Forests yield
good precision but also at the cost of large sequences. AdaBoost and Decision
Trees seem like the model of choice with one doing very well in terms of finding
a small number of important features while still having a respectable precision,
and Decision Trees yield very good precision but does perform as well in terms
of finding a small number of important features.

Below is a table showing the some results found with each of the different
models. It is important to note that, given the number possible of parameter
configurations, there is likely to be a better configuration.

2



Model Estimators Test Precision Features
AdaBoost 1 0.804 1.00
AdaBoost 3 0.823 2.60
AdaBoost 6 0.815 3.66
AdaBoost 10 0.822 4.36
AdaBoost 25 0.846 5.11
AdaBoost 50 0.835 5.33

Extra Trees 1 1.00 11.03
Extra Trees 3 1.00 20.80
Extra Trees 6 1.00 27.16
Extra Trees 10 1.00 30.85

Random Forest 1 0.897 7.91
Random Forest 3 0.942 16.09
Random Forest 6 0.970 22.44
Random Forest 10 0.987 28.65
Decision Tree - 1.0 7.30

For example, the second row shows that an AdaBoost classifier with 3 estimators
was able to classify with 82% precision using 2.75 features (on average) across
the 98 data sets.

In general, execution is very fast and should run with no problem on any
modern machine.

4 Usage

The program is a Python script and can be run in the terminal or command
prompt using

python3 e p i t o p e s . p y −−data <path/ to / d a t a f i l e s >

with the following optional parameters:

• –hla (path to file containing HLA alleles (assumed by default to be in the
working directory with name ’LuminexDefinedClassIalleles.fasta’)

• –model (which model to use – default is AdaBoost with 50 learners (this
is the default in the machine learning library used))

• –numest (the number of weak learners of the model (Decision Trees ignore
this parameter))

• –threshold (which thresholds to use for reactivity classification – default
configuration is the one described in 2)

Output Program output shows which features are the most important ones
and prints, for each record in a data set, the most important amino acids for
that specific record, ordered by importance. Output printed in the terminal or
command prompt and is written to several text-files (one for each data set).
These output files are saved to a ’Output’ directory, created in the working
directory.

Since each of the aforementioned machine learning models uses an ensemble
of different learners, it is difficult to visiualise the patterns found by the models.

3



Thus, a simple decision tree learner can be trained to learn the patterns of the
compressed data, making it easier to visualise. Trees are saved to a ’Trees’
directory, created in the working directory.

Figure 1 show an example of a (very simple) tree. Decision Trees are based
on following a path from the root to a leaf node based on inequalities at each
split. In this example, we look at the amino acid at index 177 (0-indexed) and

177 <= 351.5
gini = 0.079
samples = 97

value = [93, 4]
class = Level 0

gini = 0.0
samples = 4

value = [0, 4]
class = Level 1

True

gini = 0.0
samples = 93

value = [93, 0]
class = Level 0

False

Figure 1: Example tree illustrating the patterns found.

ask if its value is below 351.5. If true, the reactivity value is at level 1 (see
Section 2), otherwise it is level 0 – there is a total of 97 data points divided into
the two classes with 93 at level 0 and 4 at level 1. The value 351.5 might not
make much sense at first glance – all the methods work with numerical values,
so each amino acid is given a value according to the following:

• A = 0, G = 1, I = 2, L = 3, P = 4, V = 5 (aliphatic)

• F = 100, W = 101, Y = 102 (aromatic)

• D = 200, E = 201 (acidic)

• R = 300, H = 301, K = 302 (basic)

• S = 400, T = 401 (hydroxylic)

• C = 500, M = 501 (sulfur-containing)

• N = 600, Q = 601 (amidic)

4


